
Department of EIE Control Systems 5
th

 Semester 

1 

 

 

 

 

 

 

 

 

CONTROL SYSTEMS 

Mrs. Janani R 

Department of Electronics and Instrumentation Engineering 

Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Department of EIE Control Systems 5
th

 Semester 

2 

 

SYLLABUS 

UNIT 1:  INTRODUCTION TO CONTROL SYSTEMS 

Open Loop and Closed Loop systems: Generalized Block Diagram of a Feedback System: Block 

diagram algebra – Signal Flow Graph and Mason’s Gain Rule. Transfer function models of linear 

time-invariant systems-Mathematical models of physical systems. 

UNIT 2:  TIME RESPONSE ANALYSIS 

Standard test signals-Time response of first and second order systems for standard test inputs –
Steady state error and error constants – Design specifications for second order systems based on 

the time response. Proportional, Integral and Derivative Controllers. 

UNIT 3:  STABILITY ANALYSIS 

Concept of Stability: Necessary conditions for Stability – BIBO Stability-Routh-Hurwitz Criterion. 

Root locus concept: Guidelines for sketching root loci – Root locus plot for continuous time systems. 

Introduction to design – lag, lead and lag-lead compensators in time domain – Root locus method 

UNIT 4:  FREQUENCY RESPONSE ANALYSIS 

Relationship between time and frequency response, Polar plots, Bode plots, Nyquist stability  

criterion-Relative stability using Nyquist criterion-gain and phase margin. Controller Design 

specifications in frequency domain – Design of Compensators in frequency domain 

UNIT 5:  STATE VARIABLE ANALYSIS 

Concepts of state variables, State space model, Diagonalization of State Matrix – Solution of state 

equations – Eigen values and Stability Analysis – Concept of controllability and observability – Pole 

placement by state feedback – State space models of linear discrete time systems. 

REFERENCES: 

1) J.Nagarath and M. Gopal, Control Systems Engineering, Fourth Edition, New Age 
International (P) Ltd., 2009. 

2) M.Gopal, Control Systems Principles and Design, McGraw-Hill Education, Fourth Edition, 
2012. 

 

 

 

CONTENTS 
Chapter 1 ........................................................................................................................................................................................4 

INTRODUCTION TO CONTROL SYSTEMS ........................................................................................................................4 

1.1. CONTROL SYSTEMS ...............................................................................................................................................4 

1.2. EXAMPLES OF CONTROL SYSTEMS ................................................................................................................6 



Department of EIE Control Systems 5
th

 Semester 

3 

 

1.3. MATHEMATICAL MODELS OF PHYSCIAL SYSTEMS ...............................................................................7 

1.4. TRANSFER FUNCTION MODELS OF LINEAR TIME INVARIANT SYSTEMS ...................................8 

1.5. BLOCK DIAGRAM ALGEBRA............................................................................................................................ 10 

1.6. SIGNAL FLOW GRAPH AND MASONS GAIN RULE................................................................................. 12 

Chapter 2 ..................................................................................................................................................................................... 15 

TIME RESPONSE ANALYSIS ................................................................................................................................................ 15 

2.1. TIME RESPONSE................................................................................................................................................... 15 

2.2. TEST SIGNALS ....................................................................................................................................................... 16 

2.3. ORDER OF THE SYSTEM ................................................................................................................................... 17 

2.4. RESPONSE OF FIRST ORDER SYSTEM FOR UNIT STEP INPUT ....................................................... 17 

2.5. RESPONSE OF SECOND ORDER SYSTEM FOR UNIT STEP INPUT.................................................. 19 

 21 

2.6. TIME DOMAIN SPECIFICATIONS .................................................................................................................. 21 

2.7. TYPE NUMBER OF CONTROL SYSTEMS .................................................................................................... 23 

2.8. STEADY STATE ERROR ..................................................................................................................................... 23 

2.9. STATIC ERROR CONSTANTS........................................................................................................................... 23 

2.10. RESPONSE WITH P, PI, PD AND PID CONTROLLERS ........................................................................... 24 

Chapter 3 ..................................................................................................................................................................................... 25 

STABILITY ANALYSIS ............................................................................................................................................................ 25 

3.1. CONCEPT OF STABILITY................................................................................................................................... 25 

3.2. ROUTH HURWITZ CRITERION....................................................................................................................... 26 

3.3. ROOT LOCUS CONCEPT..................................................................................................................................... 27 

3.4. COMPENSATOR DESIGN ................................................................................................................................... 30 

Chapter 4 ..................................................................................................................................................................................... 32 

FREQUENCY RESPONSE ANALYSIS ................................................................................................................................. 32 

4.1. FREQUENCY RESPONSE.................................................................................................................................... 32 

4.2. FREQUENCY DOMAIN SPECIFICATIONS ................................................................................................... 32 

4.3. FREQUENCY RESPONSE PLOTS..................................................................................................................... 33 

4.4. COMPENSATOR DESIGN ................................................................................................................................... 37 

 

Chapter 5 ..................................................................................................................................................................................... 38 

STATE VARIABLE ANALYSIS .............................................................................................................................................. 38 

5.1. CONCEPTS OF STATE VARIABLES ............................................................................................................... 38 

5.2. STATE DIAGRAM .................................................................................................................................................. 38 

5.3. EIGEN VALUES AND EIGEN VECTORS ........................................................................................................ 40 



Department of EIE Control Systems 5
th

 Semester 

4 

 

5.4. CONCEPTS OF CONTROLLABILITY AND OBSERVABILITY ............................................................... 41 

5.5. CONTROL SYSTEM DESIGN VIA POLE PLACEMENT BY STATE FEEDBACK ............................. 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 

INTRODUCTION TO CONTROL SYSTEMS 
 

1.1. CONTROL SYSTEMS  
Control system theory evolved as an engineering discipline and due to universality of the 

principles involved, it is extended to various fields like economy, sociology, biology, medicine, etc.  
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Control theory has played a vital roles in the advance of engineering and science.  The automatic 

control has become an integral part of modern manufacturing and industrial processes.  When a 

number of elements or components are connected in a sequence to perform a specific function, the 

group thus formed is called system.  In a system when the output quantity is controlled by varying 

the input quantity, the system is called control system.  The output quantity is called controlled 

variable or response and input quantity is called command signal or excitation. 

1.1.1. OPEN LOOP SYSTEM 

Any physical system which does not automatically correct the variation in its output, is 

called as open loop system, or control system in which the output quantity has no effect upon the 

input quantity are called open-loop control system.  This means that the output is not feedback to the 

input for correction. 

 

Figure 1-1: Open loop System 

In open loop system the output can be varied by varying the input.  But due to external 

disturbances the system output may change.  When the output changes due to disturbances, it is not 

followed by changes in input to correct the output.  In open loop systems the changes in output are 

corrected by changing the input manually. 

1.1.2. CLOSED LOOP SYSTEM 

 

Control systems in which the output has an effect upon the input quantity in order to 

maintain the desired output value are called closed loop systems.  The open loop system can be 

modified as closed loop system by providing a feedback.  The provision of feedback automatically 

corrects the changes in output due to disturbances.  Hence the closed loop system is also called 

automatic control system.  The general block diagram of an automatic control system is shown in Fig.  

It consists of an error detector, a controller, .and plant and feedback path elements.  

 
Figure 1-2: Closed loop System 

 

The reference signal corresponds to desired output.  The feedback path elements samples 

the output and converts it to a signal of same type as that of reference signal.  The feedback signal is 

proportional to output signal and it is fed to the error detector.  The error signal generated by the 

error detector is the difference between reference signal and feedback signal.  The controller 

modifies and amplifies the error signal to produce better control action.  The modified error signal is 

fed to the plant to correct its output. 

 Advantages of open loop systems 
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 The open loop systems are simple and economical  

 The open loop systems are easier to construct 

 Generally the open loop systems are stable. 

Disadvantages of open loop systems 

 The open loop systems are inaccurate and unreliable 

 The changes in the output due to external disturbances are not corrected automatically  

Advantages of closed loop systems 

 The closed loop systems are accurate. 

 The closed loop systems are accurate even in the presence of non-linearities. 

 The sensitivity of the systems may be made small to make the system more stable. 

 The closed loop systems are less affected by noise. 

Disadvantages of closed loop systems 

 The closed loop systems are complex and costly 

 The feedback in closed loop system may lead to oscillatory response.  

 The feedback reduces the overall gain of the system. 

 Stability is a major problem in closed loop system and more care is needed to design a stable 

closed loop system 

1.2. EXAMPLES OF CONTROL SYSTEMS 

 

Temperature Control System 

Open Loop System 

 The electric furnace shown in fig. is an open loop system.  The output in the system is the 

desired temperature.  The temperature of the system is raised by heat generated by the heating 

element.  The output temperature depends on the time during which the supply to heater remains 

ON.  The ON and OFF of the supply is governed by the time setting of the relay.  The temperature is 

measured by a sensor, which gives an analog voltage corresponding to the temperature of the 

furnace.  The analog signal is converted to digital signal by an Analog-to-Digital converter (A/D 

converter).   The digital signal is given to the digital display device to display the temperature.  In this 

system if there is any change in output temperature then the time setting of the relay is not altered 

automatically. 
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Figure 1-3: Open loop Temperature Control System 

Closed Loop System 

 The electric furnace shown in fig. is a closed loop system.  The output of the system is the 

desired temperature and it depends on the time during which the supply to heater remains ON.  The 

switching ON and OFF of the relay is controlled by a controller which is a digital system or computer.  

The desired temperature is input to the system through keyboard or as a signal corresponding to 

desired temperature via ports.  The actual temperature is sensed by sensor and converted to digital 

signal by the A/D converter.  The computer reads the actual temperature and compares with desired 

temperature.  If it finds any differences ten it sends signal to switch ON or OFF the relay through D/A 

converter and amplifier.  Thus the system automatically corrects any changes in output.  Hence it is a 

closed loop system. 

 

 

 Figure 1-4: Closed loop Temperature Control System 

 

 

 

 

1.3. MATHEMATICAL MODELS OF PHYSCIAL SYSTEMS 
 

A control system is a collection of physical objects connected together to serve an objective.  

The input output relations of various physical components of a system are governed by differential 

equations.  The mathematical model of a control system constitutes a set of differential equations.  

The response or output of the system can be studied by solving the differential equations for various 

input conditions. 

 

The mathematical model of a system is linear if it obeys the principle of superposition and 

homogeneity.  This principle implies that if a system model has response y1(t) and y2(t) to any inputs 

X1(t) and X2(t) respectively, then the system response to the linear combinations of these inputs 

a1X1(t) + a2X2(t) is given by linear combination of the individual outputs a1y1(t) + a2y2(t), where a1 

and a2 are constants. 
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A mathematical model will be linear if the differential equations describing the system has 

constant coefficients.  If the coefficients of the differential equation describing the system are 

constant then the model is linear time invariant.  If the coefficients of differential equations 

governing the system are functions of time then the model is linear time varying.  The differential 

equations of a linear time invariant system can be reshaped into different form for the convenience 

of analysis.  One such model for single input and single output system analysis is transfer function of 

the system.  The transfer function of a system is defined as the ratio of Laplace transform of output 

to the Laplace transform of input with zero initial conditions. 

 𝑇𝑎𝑛𝑠𝑓𝑒𝑟  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑎𝑝𝑙𝑎𝑐𝑒  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚  𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑎𝑝𝑙𝑎𝑐𝑒  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚  𝑜𝑓 𝑖𝑛𝑝𝑢𝑡  

 

The transfer function can be obtained by taking Laplace transform of the differential 

equations governing the system with zero initial conditions and rearranging the resulting algebraic 

equations to get the ratio of output to input. 

 

1.4. TRANSFER FUNCTION MODELS OF LINEAR TIME INVARIANT 

SYSTEMS 
  

I. Mechanical Translational Systems 

The model of mechanical translational systems can be obtained by using three basic elements 

mass, spring and dash-pot.  These three elements represents three essential phenomena which 

occur in various ways in mechanical systems.  The weight of the mechanical system is represented by 

the element mass and it is assumed to be concentrated at the center of the body.   

The elastic deformation of the body can be represented by a spring.  The friction existing in 

rotating mechanical system can be represented by the dash-pot.  The dash-pot is a piston moving 

inside a cylinder filled with viscous fluid.  When a force is applied to a translational mechanical 

system, it is opposed by opposing forces due to mass, friction and elasticity of the system.   

The force acting on a mechanical body are governed by Newton’s second law of motion.  For 

translational systems it states that the sum of forces acting on a body is zero.  

 

 

 LIST OF SYMBOLS USED IN MECHANICAL TRANSLATIONAL SYSTEM 𝑥 = 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑚  

𝑣 = 𝑑𝑥𝑑𝑡 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 , 𝑚/𝑠𝑒𝑐  

𝑎 = 𝑑𝑣𝑑𝑡 = 𝑑2𝑥𝑑𝑡2 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ; 𝑚/𝑠𝑒𝑐2 

𝑓 = 𝐴𝑝𝑝𝑙𝑖𝑒𝑑  𝑓𝑜𝑟𝑐𝑒, 𝑁 (𝑁𝑒𝑤𝑡𝑜𝑛𝑠) 𝑓𝑚 = 𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒  𝑜𝑓𝑓𝑒𝑟𝑒𝑑  𝑏𝑦 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦, 𝑁 
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𝑓𝑘 = 𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒  𝑜𝑓𝑓𝑒𝑟𝑒𝑑  𝑏𝑦 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦  𝑜𝑓 𝑡ℎ𝑒  𝑏𝑜𝑑𝑦 (𝑠𝑝𝑟𝑖𝑛𝑔) , 𝑁 𝑓𝑏 = 𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒  𝑜𝑓𝑓𝑒𝑟𝑒𝑑  𝑏𝑦 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 (𝑑𝑎𝑠ℎ − 𝑝𝑜𝑡), 𝑁 𝑀 = 𝑀𝑎𝑠𝑠, 𝑘𝑔  𝐾 = 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠𝑝𝑟𝑖𝑛𝑔, 𝑁/𝑚 𝐵 = 𝑉𝑖𝑠𝑐𝑜𝑢𝑠  𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  𝑐𝑜 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  , 𝑁 − 𝑠𝑒𝑐/𝑚 

 FORCE BALANCE EQUATIONS FOR MECHANICAL ELEMENTS 

Consider an ideal mass element shown in fig. which has negligible friction and elasticity.  

Let a force be applied on it.  The mass will offer an opposing force which is proportional to 

acceleration of the body. 

  Let 𝑓 = 𝐴𝑝𝑝𝑙𝑖𝑒𝑑  𝑓𝑜𝑟𝑐𝑒;  𝑓𝑚 = 𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒  𝑑𝑢𝑒 𝑡𝑜 𝑚𝑎𝑠𝑠  

  Here 𝑓𝑚 ∝  𝑑2𝑥𝑑𝑡2  or 𝑓𝑚 = 𝑀 𝑑2𝑥𝑑𝑡2    

  Therefore  𝑓 = 𝑓𝑚 = 𝑀 𝑑2𝑥𝑑𝑡2  

Consider an ideal frictional element dashpot shown in fig. which has negligible mass and 

elasticity.  Let a force be applied on it.  The dash-pot will offer an opposing force which is 

proportional to velocity of the body. 

Let 𝑓 = 𝐴𝑝𝑝𝑙𝑖𝑒𝑑  𝑓𝑜𝑟𝑐𝑒;  𝑓𝑏 = 𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔  𝑓𝑜𝑟𝑐𝑒 𝑑𝑢𝑒  𝑡𝑜 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

  Here 𝑓𝑏 ∝  𝑑𝑥𝑑𝑡   or 𝑓𝑏 = 𝐵 𝑑𝑥𝑑𝑡  

Therefore  𝑓 = 𝑓𝑏 = 𝐵 𝑑𝑥𝑑𝑡  

Consider an ideal elastic element spring shown in fig. which 

has negligible mass and friction.  Let a force be applied on it.  The spring will offer an opposing force 

which is proportional to displacement of the body. 

Let 𝑓 = 𝐴𝑝𝑝𝑙𝑖𝑒𝑑  𝑓𝑜𝑟𝑐𝑒;  𝑓𝑘 = 𝑂𝑝𝑝𝑜𝑠𝑖𝑛𝑔  𝑓𝑜𝑟𝑐𝑒 𝑑𝑢𝑒  𝑡𝑜 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 

  Here 𝑓𝑘 ∝  𝑥  or 𝑓𝑘 = 𝐾𝑥 

Therefore  𝑓 = 𝑓𝑘 = 𝐾𝑥  

 GUIDELINE TO DETERMINE THE TRANSFER FUNTION OF 

MECHANICAL SYSTEM 

 In mechanical translational system, the differential equations governing the system are 

obtained by writing force balance equations at nodes in the system. 

 The linear displacement of the nodes are assumed as x1, x2, x3, etc., and assign a displacement 

to each node. 

 Draw the free body diagrams of the system.  The free body 

diagram is obtained by drawing which mass separately and 

then marking all the forces acting on the node. Always the 

opposing force acts in a direction opposite to applied force.  

The mass has to move in the direction of the applied force.  

Hence the displacement, velocity and acceleration of the mass will be in the direction of the 
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applied force.  If there is no applied force then the displacement, velocity and acceleration of 

the mass will be in a direction opposite to that of opposing force. 

 For each free body diagram, write one differential equation by equating the sum of applied 

force to the sum of opposing forces. 

 Take Laplace transform of differential equations to convert them to algebraic equations.  

Obtain the ratio between output variable and input variable.  This ratio is the transfer 

function of the system 

1.5. BLOCK DIAGRAM ALGEBRA 
 

A control system may consist of a number of components.  In control engineering to 

show the functions performed by each component, we commonly use a diagram called the 

block diagram.  A block diagram of a system is a pictorial representation of the functions 

performed by each component and on the flow of signals.  Such a diagram depicts the 

interrelationships that exist among the various components.  The elements of a block 

diagram are block, branch point and summing point. 

BLOCK: In a block diagram all system variables are linked to each 

other through functional blocks.  The functional block or simply block 

is a symbol for the mathematical operation on the input signal to the 

block that produces the output.  The transfer functions of the 

components are usually entered in the corresponding blocks, which are connected by arrows to 

indicate the direction of the flow of signals.  The output signal from the block is given by the product 

of input signal and transfer function in the block. 

SUMMING POINT: Summing points are used to add two or more signals in the 

system.  Referring to fig, a circle with a cross is the symbol that indicates a 

summing operation.  The plus or minus sign at each arrow indicates whether the 

signal is to be added or subtracted. 

BRANCH POINT: A branch point is a point from which the signal from a block 

goes concurrently to other blocks or summing points.  

 CONSTRUCTING BLOCK DIAGRAM FOR CONTROL SYSTEMS  

 A control system can be represented diagrammatically by block diagram.  The differential 

equations governing the system are used to construct the block diagram.  By taking Laplace 

transform the differential equations are converted to algebraic equations.  The equations will have 

variables and constants.  From the working knowledge of the system the input and output variables 

are identified and the block diagram for each equation can be drawn.  Each equation gives one 

section of block diagram.  The output of one section will be input for another section.  The various 

sections are interconnected to obtain the overall block diagram of the system. 

 BLOCK DIAGRAM REDUCTION: 

               The block diagram can be reduced to find the overall transfer function of the system.  The 

following rules can be used for block diagram reduction. 

RULES OF BLOCK DIAGRAM ALGEBRA 



Department of EIE Control Systems 5
th

 Semester 

11 

 

Rule 1: Combining the blocks in cascade 

 

Rule 2: Combining the parallel blocks  

 

Rule 3: Moving the branch point ahead of the block 

 

Rule 4: Moving the branch point before the block 

 

Rule 5: Moving the summing point ahead of the block 

 

 

 

Rule 6: Moving the summing point before the block 

 

Rule 7: Interchanging summing point 
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Rule 8: Splitting summing points 

 

Rule 9:Combining summing points 

 

Rule 10: Elimination of (negative) feedback loop 

 

Rule 11: Elimination of (positive) feedback loop 

 

 

 

 

1.6. SIGNAL FLOW GRAPH AND MASONS GAIN RULE 
 

               The signal flow graph is used to represent the control system graphically and it was developed by SJ 

Mason.   A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations.  By 

taking laplace transform, the time domain differential equations governing a control system can be 

transferred to a set of algebraic equations in s-domain.  The signal flow graph of the system can be 
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constructed using these equations.  The signal flow graphs depicts the flow of signals from one point of a 

system to another and gives the relationships among the signals.  A signal flow graph consists of a network in 

which nodes are connected by directed branches.  Each node represents a system variable and each branch 

connected between two nodes acts as a signal multiplier.   When a signal pass through a branch, it gets 

multiplied by the gain of the branch.  In a signal flow graph, the signal flows in only one direction.  The 

direction of signal flow is indicated by an arrow placed on the branch and the gain is indicated along the 

branch. 

EXPLANATION OF TERMS USED IN SIGNAL FLOW GRAPH 

Node    : A node is a point representing a variable or signal. 

Branch                                                    : A branch is directed line segment joining two nodes.  The arrow on 

the branch indicates the direction of signal flow and the gain of a 

branch is the transmittance. 

Transmittance                                      : The gain acquired by the signal when it travels from one node to 

another is called transmittance.  The transmittance can be real or 

complex. 

Input node (Source)                             : It is a node that has only outgoing branches. 

Output node (Sink)                               : It is a node that has only incoming branches 

Path                                                          : A path is a traversal of connected branches in the direction of the 

branch arrows.  The path should not cross a node more than once. 

Forward Path                                        : It is the path from an input node to an output node that does not 

cross any node more than once. 

Forward path gain                               : It is the product of the branch transmittances of a forward path. 

Individual loop                                      : It is a closed path starting from a node and after passing through a 

certain part of a graph arrives at same node without crossing any 

node more than once. 

Loop gain                                               : It is the product of the branch transmittances (gains) of a loop. 

Non touching Loops                             : If the loops does not have a common node then they are said to be 

non-touching loops. 

PROPERTIES OF SIGNAL FLOW GRAPH 

            The basic properties of signal flow graph are the following: 

i. The algebraic equations which are used to construct signal flow graph must be in the form of cause 

and effect relationship. 
ii. Signal flow graph is applicable to linear systems only. 

iii. A node in the signal flow graph represents the variable or signal  
iv. A node adds the signals of all incoming branches and transmits the sum to all, outgoing branches.  

v. A mixed node which has both incoming and outgoing signals can be treated as an output node by 

adding an outgoing branch of unity transmittance. 

vi. A branch indicates functional dependence of one signal on the other.  
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vii. The signals travel along branches only in the marked direction and when it travels it gets  multiplied 

by the gain or transmittance of the branch. 
viii. The signal flow graph of system is not unique.  By rearranging the system equations different types of 

signal flow graphs can be drawn for a given system. 

 

SIGNAL FLOW GRAPH ALGEBRA  

 Signal flow graph for a system can be reduced to obtain the transfer function of a system using the 

following rules.  The guideline in developing the rules for signal flow graph algebra is that the signal at node is 

given by sum of all incoming signals. 

Rule 1: Incoming signal to a node through a branch is given by the product of a signal at previous node and 

the gain of the branch. 

Rule 2: Cascade branches can be combined to give a single branch whose transmittance is equal to the 

product of individual branch transmittance. 

Rule 3: Parallel branches may be represented by single branch whose transmittance is the sum of individual 

branch transmittances. 

Rule 4: A mixed node can be eliminated by multiplying the transmittance of outgoing branch (from the mixed 

node) to the transmittance of all incoming branches to the mixed node. 

Rule 5: A loop may be eliminated by writing equations at the input and output node and rearranging the 

equations to find the ratio of output to input.  This ratio gives the gain of resultant branch. 

SIGNAL FLOW GRAPH REDUCTION  

 The signal flow graph of a system can be reduced either by using the rules of a signal flow graph 

algebra or by using Mason’s gain formula.  For signal flow graph reduction using the rules of signal flow 

graph, write equations at every node and then rearrange these equations to get the ratio of output and input 

(transfer function) 

MASON’S GAIN FORMULA: 

 The Mason’s gain formula is used to determine the transfer function of the system from the signal 

flow graph of the system. 

 Let  R(s) = Input to the system 

         C(s) = Output of the system 

 Now, Transfer function of the system, T(s) = C(s)/R(s) 

Mason’s gain formula states the overall gain of the system [transfer function] as follows,  𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑔𝑎𝑖𝑛,𝑇 = 1∆∑𝑃𝐾∆𝐾𝐾  

Where,  T = T(s) = Transfer function of the system 

  PK  = Forward path gain of Kth forward path 
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  K = Number of forward paths in the signal flow graph 

                            Δ = 1 – (Sum of individual loop gains) + (Sum of gain products of all possible         

combinations of two non-touching loops) – (Sum of gain products of all possible combinations of three non-touching loops) + …………….. 
  ΔK = Δ for that part of the graph which is not touching Kth forward path. 

PROCEDURE FOR CONVERTING BLOCK DIAGRAM TO SIGNAL FLOW GRAPH 

 The signal flow graph and block diagram of a system provides the same information but there is no 

standard procedure for reducing the block diagram to find the transfer function of the system.  Also the block 

diagram reducing technique will be tedious and it is difficult to choose the rule to be applied for 

simplification.  The following procedure can be used to convert block diagram to signal flow graph.  

1) Assume nodes at input, output, at every summing point, at every branch point and in between 

cascaded blocks. 

2) Draw the nodes separately as small circles and number the circles in the order 1, 2, 3, 4,… etc. 
3) From the block diagram find the gain between each node in the main forward path and connect all 

the corresponding circles by straight line and mark the gain between the nodes. 

4) Draw the feed forward paths between various nodes and mark the gain of feed forward path along 

with sign. 

5) Draw the feedback paths between various nodes and mark the gain of feedback paths along with 

sign. 

 

 

 

 

 

 

 

 

Chapter 2 

TIME RESPONSE ANALYSIS 
 

2.1. TIME RESPONSE  
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The time response of the system is the output of the closed loop system as a function of time.  It is denoted by 

c(t).  The time response can be obtained by solving the differential equation governing the system.  

Alternatively, the response c(t) can be obtained from the transfer function of the system and the input to the 

system.  

 𝑇ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑜𝑜𝑝 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,𝐶(𝑠)𝑅(𝑠) = 𝐺(𝑠)1+𝐺(𝑠)𝐻(𝑠)  

The output or response in s-domain, C(s) is given by the product of the transfer function and the input R(s).   

On taking inverse Laplace transform of this product the time domain response, c(t) can be obtained.  

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒  𝑖𝑛 𝑠 − 𝑑𝑜𝑚𝑎𝑖𝑛 𝐶(𝑠) = 𝑅(𝑠)𝑀(𝑠)  

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒  𝑖𝑛 𝑡𝑖𝑚𝑒 𝑑𝑜𝑚𝑎𝑖𝑛  𝑐(𝑡) = 𝐿−1{𝐶(𝑠)} = 𝐿−1{𝑅(𝑠) ∗ 𝑀(𝑠)}  

The time response of a control system consists of two parts: the transient and the steady state response.   The 

transient response is the response of the system when the input changes from one state to another.  The 

steady state response is the response as time, t approaches infinity. 

2.2. TEST SIGNALS 
 

In most of the systems the input signals are not known ahead of time and also it is difficult to express the 

input signals mathematically by simple equations.  The commonly used test input signals are impulse, step, 

ramp, acceleration and sinusoidal signals. 

The standard test signals are, 

 Step Signal, Unit Step Signal 

 Ramp Signal, Unit Ramp Signal 

 Parabolic Signal 

 Impulse Signal 

 Sinusoidal Signal 

STEP SIGNAL 

The step signal is a signal whose value changes from zero to A at t = 0 and remains constant at A for 

t>0.  The step signal resembles an actual steady input to a system.  A special case of step signal is 

unit step in which A is unity.  The mathematical representation of the step signal is, 𝑟(𝑡) = 1       ;         𝑡 ≥ 0 

                                                                           = 0       ;         𝑡 < 0 

1 

RAMP SIGNAL 

The ramp signal is a signal whose value increases linearly with time from an initial value of zero at 

t=0.  The ramp signal resembles a constant velocity input to the system.  A special case of step signal 

is unit ramp signal in which the value of A is unity.  The mathematical representation of the ramp 

signal is, 𝑟(𝑡) = 𝐴 𝑡       ;         𝑡 ≥ 0 

                                                                           = 0       ;         𝑡 < 0 

2 
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PARABOLIC SIGNAL 

In parabolic signal, the instantaneous value varies as square of the time from an initial value of zero 

at t=0.  The sketch of the signal with respect to time resembles a parabola.  The parabolic signal 

resembles a constant acceleration input to the system.  A special case of parabolic signal is unit 

parabolic signal in which A is unity.  The mathematical representation of the parabolic signal is, 

𝑟(𝑡) = 𝐴𝑡22       ;         𝑡 ≥ 0 

                                                                           = 0       ;         𝑡 < 0 

3 

IMPULSE SIGNAL 

A signal of very large magnitude which is available for very short duration is called impulse signal.  

The unit impulse signal is a special case, in which A is unity.  The impulse signal is denoted by δ(t) 
and mathematically it is expressed as, δ(𝑡) =  ∞      ;         𝑡 = 0 

                                                                           = 0       ;         𝑡 ≠ 0 

4 

2.3. ORDER OF THE SYSTEM  
 

The input and output relationship of a control system can be expressed by nth order differential 
equation shown in equation 𝑎0 𝑑𝑛𝑑𝑡𝑛 𝑝(𝑡) + 𝑎1 𝑑𝑛−1𝑑𝑡𝑛−1 𝑝(𝑡) + ⋯ + 𝑎𝑛−1 𝑑𝑑𝑡𝑝(𝑡) + 𝑎𝑛 𝑝(𝑡)= 𝑏0 𝑑𝑚𝑑𝑡𝑚 𝑝(𝑡) + 𝑏1 𝑑𝑚−1𝑑𝑡𝑚−1 𝑞(𝑡) + ⋯ + 𝑏𝑛−1 𝑑𝑑𝑡𝑞(𝑡) + 𝑏𝑚𝑞(𝑡)        𝑡 ≥ 0 

5 

Where p(t) = Output Response and q(t) = Input Excitation 
The order of the system is given by the order of the differential equation governing the system.  If 
the system is governed by nth order differential equation, then the system is called nth Order 
system. 
Alternatively, the order can be determined from the transfer function of the system.  The transfer 

function of the system can be obtained by taking Laplace transform of the differential equation 
governing the system and rearranging them as a ratio of two polynomials in s, as given by equation 𝑇(𝑠) = 𝑃(𝑠)𝑄(𝑠) = 𝑏0𝑠𝑚 + 𝑏1𝑠𝑚−1 + ⋯ + 𝑏𝑚−1𝑠1 + 𝑏𝑚𝑎0𝑠𝑛 + 𝑎1𝑠𝑛−1 + ⋯ + 𝑎𝑛−1𝑠1 + 𝑎𝑛  

6 

Where P(s)= Numerator polynomial and Q(s) = Denominator polynomial 

The order of the system is given by the maximum power of s in the denominator polynomial, Q(s). 

The numerator and denominator polynomial of equation can be expressed in the factorized form as 

shown  𝑇(𝑠) = 𝑃(𝑠)𝑄(𝑠) = (𝑠 + 𝑧1)(𝑠 + 𝑧2) … (𝑠 + 𝑧𝑚)(𝑠 + 𝑝1 )(𝑠 + 𝑝2 ) … (𝑠 + 𝑝𝑛 ) 
7 

Where  𝑧1, 𝑧2,… , 𝑧𝑛 are zeros of the system. 

 𝑝1, 𝑝2,… ,𝑝𝑛  are poles of the system. 
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2.4. RESPONSE OF FIRST ORDER SYSTEM FOR UNIT STEP INPUT 
 
The closed loop order system with unity feedback sis shown in  

 

Figure 2-1: Closed loop for first order system 

The closed loop transfer function of first order system, 
𝐶(𝑠)𝑅(𝑠) = 11+𝑇𝑠 

If the input is unit step then 𝑟(𝑡) = 1,𝑅(𝑠) = 1𝑠 

The response in s-domain 𝐶(𝑠) = 𝑅(𝑠) 1(1+𝑇𝑠) = 1𝑠 1(1+𝑇𝑠) = 1𝑠𝑇(1𝑇+𝑠) = 1𝑇𝑠(𝑠+1𝑇)  

By partial fraction expansion, 𝐶(𝑠) = 1𝑇𝑠(𝑠 + 1𝑇) = 1𝑇 = 𝐴𝑠 + 𝐵(𝑠 + 1𝑇) 
On solving  𝐶(𝑠) = 1𝑠 − 1(𝑠 + 1𝑇) 

The response in time domain is given by, 𝑐(𝑡) = 𝐿−1{𝐶(𝑠)} = 𝐿−1{1𝑠 − 1(𝑠 + 1𝑇)} = 1 − 𝑒−𝑡𝑇 
8 

 

When,  t = 0,  c(t) = 1-𝑒0=1 

When,  t = 1T,  c(t) = 1-𝑒−1=0.632 

When,  t = 2T,  c(t) = 1-𝑒−2=0.865 

When,  t = 3T,  c(t) = 1-𝑒−3=0.95 

When,  t = 4T,  c(t) = 1-𝑒−4=0.9817 

When,  t = 5T,  c(t) = 1-𝑒−5=0.993 

When,  t = ∞,  c(t) = 1-𝑒−∞=1 
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Figure 2-2: Response of First Order System to Unit Step Input 

 

2.5. RESPONSE OF SECOND ORDER SYSTEM FOR UNIT STEP INPUT 
 

The closed loop second order system is shown in figure. 

 

 𝐶(𝑠)𝑅(𝑠) = 𝜔𝑛2𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2 
9 

Where 𝜔𝑛 = 𝑈𝑛𝑑𝑎𝑚𝑝𝑒𝑑 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦,𝑟𝑎𝑑/𝑠𝑒𝑐 

 𝜁 = 𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜. 
The damping ratio is defined as the ratio of the actual damping to the critical damping.  The 

response c(t) of second order system depends in the value of damping ratio. Depending on the 
value of  𝜁 the system can be classified into the following four cases 

Case 1: Undamped System, 𝜁 = 0 

Case 2: Under damped System, 0 < 𝜁 < 1 

Case 3: Critical damped System, 𝜁 = 1 

Case 4: Overdamped System, 𝜁 > 1 
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RESPONSE OF UNDAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT 

The standard form of closed loop transfer function of second order system is, 𝐶(𝑠)𝑅(𝑠) = 𝜔𝑛2𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2 
10 

For undamped system 𝜁 = 0 𝐶(𝑠)𝑅(𝑠) = 𝜔𝑛2𝑠2 + 𝜔𝑛2 
11 

When the input is unit step 𝑅(𝑠) = 1/𝑠.  𝑈𝑛𝑖𝑡  𝑠𝑡𝑒𝑝 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 , 𝐶(𝑡) = 1 − cos 𝜔𝑛𝑡  𝑆𝑡𝑒𝑝  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  𝐶(𝑡) = 𝐴(1 − cos 𝜔𝑛𝑡) 12 

RESPONSE OF UNDERDAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT 

The standard form of closed loop transfer function of second order system is, 𝐶(𝑠)𝑅(𝑠) = 𝜔𝑛2𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2 
13 

For undamped system 0 < 𝜁 < 1 the roots of the denominator are complex conjugate 

When the input is unit step 𝑅(𝑠) = 1/𝑠.  

𝑈𝑛𝑖𝑡  𝑠𝑡𝑒𝑝  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 1 − 𝑒−𝜁𝜔𝑛 𝑡√1 − 𝜁2 sin(𝜔𝑑 𝑡 + 𝜃) ;  𝜃 = tan−1 √1 − 𝜁2𝜁  

𝑆𝑡𝑒𝑝  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  = 𝐴(1 − 𝑒−𝜁𝜔𝑛 𝑡√1 − 𝜁2 sin(𝜔𝑑𝑡 + 𝜃) ;  𝜃 = tan−1 √1 − 𝜁2𝜁 ) 
14 

RESPONSE OF CRITICALLY DAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT 

The standard form of closed loop transfer function of second order system is, 𝐶(𝑠)𝑅(𝑠) = 𝜔𝑛2𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2 
15 

For critically damped system 𝜁 = 1 𝐶(𝑠)𝑅(𝑠) = 𝜔𝑛2𝑠2 + 2𝜔𝑛𝑠 + 𝜔𝑛2 
16 

When the input is unit step 𝑅(𝑠) = 1/𝑠.  𝑈𝑛𝑖𝑡  𝑠𝑡𝑒𝑝 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 1 − 𝑒−𝜔𝑛 𝑡(1 + 𝜔𝑛𝑡) 𝑆𝑡𝑒𝑝 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  = 𝐴[1 − 𝑒−𝜔𝑛𝑡(1 + 𝜔𝑛𝑡)] 17 
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Figure 2-3: Second order underdamped responses for damping ratio values  

2.6. TIME DOMAIN SPECIFICATIONS 
 

The desired performance characteristics of control systems are specified in terms of time domain 

specifications.  The transient response of a system to a unit step input depends on the initial 

conditions.  Therefore to compare the time response of various systems it is necessary to start with 

standard initial conditions.  The transient response characteristics of control system to a unit step 

input is specified in terms of the following time domain specifications. 

1. Delay Time  td 

2. Rise Time tr 

3. Peak Time tp 

4. Maximum Overshoot  Mp 

5. Settling Time ts 

DELAY TIME td: 

 It is the time taken for the response to reach 50% of the final value, for the very first time 

RISE TIME tr: 

 It is the time taken for response to raise from 0 to 100% for the very first time.  For 

underdamped system, the rise time is calculated from 0% to 100%.  But for overdamped system, 

the rise time is calculated as the time taken by the system response to raise from 10% to 90% 𝑡𝑟 = 𝜋 − 𝜃𝜔𝑑  
18 

Where 𝜃 = tan−1 √1−𝜁2𝜁    and  𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 
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PEAK TIME tp: 

 It is the time taken for the response to reach the peak value the very first time. 𝑡𝑝 = 𝜋𝜔𝑑 19 

 
Figure 2-4: Second order system Time Domain Specifications 

 
PEAK OVERSHOOT Mp: 

 It is defined as the ratio of the maximum peak value to the final value, where the maximum 

peak value is measured from final value. 

%𝑀𝑝 = 𝑒− 𝜁𝜋√1−𝜁2
*100 

20 

SETTLING TIME: 

 It is defined as the time taken by the response to reach and stay within a specified error.  

The usual tolerable error is 2% or 5% of the final value. 𝑡𝑠 = 1𝜁𝜔𝑛      𝑓𝑜𝑟 2% 𝑒𝑟𝑟𝑜𝑟 
21 

𝑡𝑠 = 3𝜁𝜔𝑛      𝑓𝑜𝑟 2% 𝑒𝑟𝑟𝑜𝑟 
22 
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2.7. TYPE NUMBER OF CONTROL SYSTEMS 
 

The number of poles of the loop transfer function lying at the origin decides the type 

number of the system.  In general, if N is the number of poles at the origin then the type number is 

N. 

If N =0, then the system is Type – 0 System 

If N = 1, then the system is Type – 1 System 

If N = 2, then the system is Type – 2 System 

If N = 3, then the system is Type – 3 System and so on. 

2.8. STEADY STATE ERROR 
 

The steady state error is the value of error signal e(t), when t tends to infinity.  The steady 

state error is a measure of system accuracy.  The steady state error 𝑒𝑠𝑠 = lim𝑡→∝ 𝑒(𝑡) = lim𝑠→0 𝑠𝐸(𝑠) = lim𝑠→0 𝑠𝑅(𝑠)1 + 𝐺(𝑠)𝐻(𝑠)  23 

 

2.9. STATIC ERROR CONSTANTS 
 

When a control system is excited with standard input signal, the steady state error may be 

zero, constant or infinity.  The value of steady state error depends on the type number and the input 

signal.  Type-0 system will have a constant steady state error when the input is step signal.  Type-1 

system will have a constant steady state error when the input is ramp signal.  Type-2 system will 

have a constant steady state error when the input is parabolic signal. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,𝐾𝑝 = lim𝑠→0 𝐺(𝑠)𝐻(𝑠)   𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,𝐾𝑣 = lim𝑠→0 𝑠 𝐺(𝑠)𝐻(𝑠) 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,𝐾𝑎 = lim𝑠→0 𝑠2𝐺(𝑠)𝐻(𝑠) 

 

𝐺(𝑠) = 100𝑆2 + 15𝑠+ 100 

Given the transfer function G(s) determine Rise Time tr, Peak Time tp, Maximum 

Overshoot Mp , Settling Time ts  
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2.10. RESPONSE WITH P, PI, PD AND PID CONTROLLERS 
 

EFFECT OF PROPORTIONAL CONTROLLER (P- Controller) 

 The proportional controller produces an output signal which is proportional to error signal.  

The proportional controller amplifies the error signal and increases the loop gain of the system.  

The following aspects of system behavior are improved by increasing loop gain. 

1) Steady state tracking accuracy. 

2) Disturbance signal rejection. 

3) Relative stability. 

The drawback in proportional control action is that it produces a constant steady state 

error.  

EFFECT OF PROPORTIONAL INTEGRAL CONTROLLER (PI- Controller) 

 The proportional plus integral controller (PI-controller) produces an output signal 

consisting of two terms: one proportional to error signal and the other proportional to the integral of 

error signal. 

1) PI Controller introduces a zero in the system and increases the order by one. 

2) Reduces steady state error. 

EFFECT OF PROPORTIONAL DERIVATIVE CONTROLLER (PD- Controller) 

 The proportional plus derivative controller (PD-controller) produces an output signal 

consisting of two terms: one proportional to error signal and the other proportional to the derivative 

of error signal. 

1) PD Controller introduces a zero in the system and increases damping ratio. 

2) Increases peak overshoot and reduce the rise time. 

EFFECT OF PROPORTIONAL INTEGRAL DERIVATIVE CONTROLLER (PID- Controller) 

 A suitable combination of the three basic modes: Proportional, integral and derivative PID 

improve all aspects of the system performance. 

1) Proportional controller stabilizes the gain but produces steady state error. 

For a unity feedback control system the open loop transfer function is 𝐺(𝑠) = 10(𝑆+2)𝑆2(𝑆+1). 
Find a) The position, velocity and acceleration error constants 

          b) The steady state error when the input is R(s) where 𝑅(𝑠) = 3𝑠 − 2𝑠2 + 13𝑠3 
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2) Integral controller reduces or eliminates the steady state error. 

3) Derivative controller reduces the rate of change of error. 

Chapter 3 

STABILITY ANALYSIS 

 

3.1. CONCEPT OF STABILITY 
 

DEFINITIONS OF STABILITY 

          The term stability refers to the stable working condition of a control system.  Every working 
system is designed to be stable.  In a stable system, the response or output is predictable, finite and 
stable for a given input.  The different definitions of the stability are the following.  

1) A system is stable, if its output is bounded (finite) for any bounded (finite) input. 
2) A system is asymptotically stable, if in the absence of the input, the output tends 

towards zero irrespective of initial conditions. 
3) The system is table if for a bounded disturbing input signal the output vanishes 

ultimately as t approaches infinity. 
 
The following are three points may be stated regarding the stability of the system depending on the 

location of roots of characteristic equation. 
              

1) If all the roots of characteristic equation has negative real parts, then the system is stable. 
2) If any root of the characteristic equation has a positive real part or if there is a repeated root 

on the imaginary axis then the system is unstable. 

3) If the condition (1) is satisfied except for the presence of one or more non-repeated roots on 
the imaginary axis, then the system is limitedly or marginally stable. 

 

The following conclusions can be made about coefficients of characteristic polynomial. 
1) If all the coefficients are positive and if no coefficient is zero, then all the roots are in the left 

half of s-plane. 
2) If any coefficient ai is equal to zero then, some of the roots may be on the imaginary axis or 

on the right half of s-plane. 

3) If any coefficient ai is negative then atleast one root is in the right half of s-plane. 
 
Thus the necessary condition for stability of the system is that all the coefficients of its characteristic 
polynomial be positive.  If any coefficient is zero/negative, we can immediately say that the system is 
unstable.  When all the coefficients are positive, the system may or may not be stable, because there 
may be roots in the right half plane and/or on the imaginary axis. 

 

Concept of Stability: Necessary conditions for Stability – BIBO Stability-Routh-Hurwitz Criterion.  Root 

locus concept: Guidelines for sketching root loci – Root locus plot for continuous time systems.  

Introduction to design – lag, lead and lag-lead compensators in time domain – Root locus method 
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3.2. ROUTH HURWITZ CRITERION 
 

The Routh-Hurwitz stability criterion is an analytical procedure for determining whether all 

the roots of a polynomial have negative real part or not.   

The first step in analyzing the stability of a system is to examine its characteristic equation.  

The necessary condition for stability is that all the coefficients of the polynomial be positive.  If 

some of the coefficients are zero or negative it can be concluded that the system is not stable. 

When all the coefficients are positive, the system is not necessarily stable.  Even though the 

coefficient are positive, some of the roots may lie on the right half of s-plane or on the imaginary 

axis.  In order for all the roots to have negative real parts, it is necessary but not sufficient that all 

coefficients of the characteristic equation be positive.  If all the coefficients of the characteristic 

equation are positive, then the system may be stable and one should proceed further to examine the 

sufficient conditions of stability.  The Routh stability criterion is based on ordering the coefficients 

of the characteristic equation, into a schedule called the Routh array as shown below. 𝑎0𝑠𝑛 + 𝑎1𝑠𝑛−1 + 𝑎2𝑠𝑛−2 + ⋯+ 𝑎𝑛−1𝑠1 + 𝑎𝑛 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑎0 > 0 

  𝑠𝑛 𝑎0 𝑎2 𝑎4 𝑎6 𝑎8 …. 𝑠𝑛−1 𝑎1 𝑎3 𝑎5 𝑎7 𝑎9 …. 𝑠𝑛−2 𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 …. 𝑠𝑛−3 𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 …. 

       𝑠1 𝑔0      𝑠0 ℎ0      

The Routh stability criterion can be stated as follows. 

“The necessary and sufficient condition for stability is that all of the elements in the first 

column of the Routh array be positive.  If this condition is not met, the system is unstable and 

the number of sign changes in the elements of the first column of the Routh array 

corresponds to the number of roots of the characteristic equation in the right half of the s -

plane”.  

If the order of sign of first column element is +, +, -, + and +. Then + to – considered as one sign 

change and – to + as another sign change. 
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3.3. ROOT LOCUS CONCEPT 
 

The root locus technique is a powerful tool for adjusting the location of closed loop poles to achieve 

the desired system performance by varying one or more system parameters.  The path taken by the 

roots of characteristic equation when open loop gain K is varied from 0 to ∞ are called root loci. 

CONSTRUCTION OF ROOT LOCUS: 

The exact root locus is sketched by trial and error procedure.  A set of rules have been developed to 

reduce the task involved in sketching root locus and to develop a quick approximate sketch.  From 

the approximate sketch, a more accurate root locus can be obtained by a few trials. 

RULES FOR CONSTRUCTION OF ROOT LOCUS: 

RULE .1. The root locus is symmetrical about the real axis. 

RULE .2. Each branch of the root locus originates from an open-loop pole corresponding to K =0 and terminates at either on a finite open loop zero corresponding to K = ∞.  The number of 
branches of the root locus terminating on infinity is equal to n-m. 

RULE .3. Segments of the real axis having an odd number of real axis open-loop poles plus zeros 

to their right are parts of the root locus. 

RULE .4. The n-m root locus branches that tend to infinity, do so along straight line asymptotes 

making angles with the real axis given by 𝜙𝐴 = 180(2𝑞+1)𝑛−𝑚  ;   𝑞 = 0, 1,2, 3,… ,𝑛 − 𝑚 

Using Routh Criterion, determine the stability of the system represented by the 

characteristic equation, 𝑆4 + 8𝑆3 + 18𝑆2 + 16𝑆 + 5 = 0. Comment on the location of the 

roots of the characteristic equation 

Construct Routh array and determine the stability of the system whose characteristic 

equation is, 𝑆6 + 2𝑆5 + 8𝑆4 + 12𝑆3 + 20𝑆2 + 16𝑆+ 16 = 0.  Also determine the 

number of roots lying on right half of s-plane, left half of s-plane and on imaginary axis. 

By Routh stability Criterion, determine the stability of the system represented by the 

characteristic equation, 9𝑆5 − 20𝑆4 + 10𝑆3 − 𝑆2 − 9𝑆 − 10 = 0. Comment on the 

location of the roots of the characteristic equation 
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RULE .5. The point of intersection of the asymptotes with the real axis is at 𝑠 = 𝜎𝐴 where,  𝜎𝐴 = 𝑆𝑢𝑚 𝑜𝑓 𝑃𝑜𝑙𝑒𝑠−𝑆𝑢𝑚 𝑜𝑓 𝑍𝑒𝑟𝑜𝑠𝑛−𝑚  

RULE .6. The breakaway and breakin points of the root locus are determined from the roots of 

the equation dK/ds = 0. 

RULE .7. The angle of departure from a complex open-loop pole is given by, 𝜙𝑃 = ±180(2𝑞 + 1) + 𝜙 ; 𝑞 = 0, 1,2,…. 
The angle of arrival from a complex open-loop zero is given by, 𝜙𝑧 = ±180(2𝑞 + 1) + 𝜙 ; 𝑞 = 0, 1,2,…. 

 

RULE .8. The points of intersection of root locus branches with the imaginary axis can be 

determined by use of the Routh criterion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A unity feedback control system has an open loop transfer function, 𝐺(𝑠) = 𝐾𝑆(𝑆2+4𝑆+13) . Sketch the root locus.  
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3.4. COMPENSATOR DESIGN 
 
The choice between series compensation and parallel compensation depends on 

1) Nature of signals in the system. 

2) Power levels at various points 

3) Components available 

4) Designers experience 

5) Economic consideration and so on. 

         In control systems, compensation is required in the following situations, 

1) When the system is absolutely unstable, then compensation is required to stabilize the 

system and also to meet the desired performance. 

2) When the system is stable, compensation is provided to obtain the desired performance.  

 

PROCEDURE FOR DESIGN OF LAG COMPENSATOR USING ROOT LOCUS 

Step. 1 Draw the root locus of uncompensated system. 

Step. 2 Determine the dominant pole, sd.  Draw a straight line through the origin with an 

angle cos−1𝜁 with respect to negative real axis.  The intersection point of the straight line 

with root locus gives the dominant pole sd 

Step. 3 Determine the open loop gain of the uncompensated system at s= sd.  Let this gain be 

K.  The open loop gain K at s = sd on root locus is given by 𝐾 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑠𝑑 𝑡𝑜 𝑜𝑝𝑒𝑛 𝑙𝑜𝑜𝑝 𝑝𝑜𝑙𝑒𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑠𝑑 𝑡𝑜 𝑜𝑝𝑒𝑛 𝑙𝑜𝑜𝑝 𝑧𝑒𝑟𝑜𝑠 

Step. 4 Calculate the parameter, β of the compensator. 
Step. 5 Determine the transfer function of lag compensator.  The zero of the lag 

compensator (1/T) is chosen to be 10% of the second pole of uncompensated system. 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑔 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟 𝐺𝑐(𝑠) = 𝛽 (1 + 𝑠𝑇)(1 + 𝑠𝛽𝑇) 

Step. 6 Determine the open loop transfer function of the compensated system.  The lag 

compensator is connected in series with the plant. 

Step. 7 Check whether the compensated system satisfies the steady state error 

requirement.  If it is satisfied, then the design is accepted otherwise repeat the design by 

modifying the location of poles and zeros of the compensator. 

Sketch the root locus of the system whose open loop transfer function,  𝐺(𝑠) =𝐾𝑆(𝑠+2)(𝑠+4) 
Find the value of K so that the damping ratio of the closed loop system is 0.5   
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The forward path transfer function of a certain unity feedback control system is given by (𝑠) = 𝐾𝑆(𝑆+2)(𝑆+8) . Design a suitable lag compensator so that the system meets the following specifications (i) Percentage overshoot ≤ 16% for unit step input.  (ii) Steady state error ≤ 0.125 for unit ramp input. 
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Chapter 4 

FREQUENCY RESPONSE ANALYSIS 
 

4.1. FREQUENCY RESPONSE 
 The frequency domain transfer function T(jω) is a complex function of ω.  Hence it can be 
separated into magnitude function and phase function.  Now, the magnitude and phase functions will be real functions of ω, and they are called frequency response 

4.2. FREQUENCY DOMAIN SPECIFICATIONS 
 

The performance and characteristics of a system in frequency domain are measured in 

terms of frequency domain specifications.  The requirements of a system to be designed are usually 

specified in terms these specifications.  The frequency domain specifications are 

Resonant Peak (Mr) 

 The maximum value of the magnitude of closed loop transfer function is called the resonant 

peak Mr.  A large resonant peak corresponds to a large overshoot in transient response. 

Resonant Frequency (ωr) 

 The frequency at which the resonant peak occurs is called resonant frequency ωr.  This is 

related to the frequency of oscillation in the step response and thus it is indicative of the speed of 

transient response. 

Bandwidth (ωb) 

 The bandwidth is the range of frequencies for which the system normalized gain is more 

than -3db.  The frequency at which the gain is -3db is called cut-off frequency.  Bandwidth is usually 

defined for closed loop system and it transmits the signals whose frequencies are less than the cut-

off frequency.  The bandwidth is a measure of the ability of a feedback system to reproduce the 

input signal, noise rejection characteristics and rise time. 

Gain Margin (Kg) 

 The gain margin Kg is given by the reciprocal of the magnitude of open loop transfer 

function at phase cross over frequency.  The frequency at which the phase of open loop transfer 

function is 180° is called phase cross over frequency ωpc 

Phase Margin (γ) 

 The phase margin is defined as the additional phase lag to be added at the gain cross over 

frequency in order to bring the system to the verge of instability.  It is obtained as given below 

Phase Margin γ=180°+φgc 



Department of EIE Control Systems 5
th

 Semester 

33 

 

4.3. FREQUENCY RESPONSE PLOTS 
 

BODE PLOT 

 The bode plot is a frequency response plot of the sinusoidal transfer function of a system.  It consists of two graphs, one is a plot of the magnitude of a sinusoidal transfer function versus log ω.  The other is a plot of the phase angle of a sinusoidal transfer function versus log ω. 
 

 

 

 

 

 

 

𝐺(𝑠) = 𝐾𝑠2(1 + 0.2𝑠)(1 + 0.02𝑠) 

Sketch Bode plot for the following transfer function and determine the system gain K for 

the gain cross over frequency to be 5 rad/sec. 
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Examples to practice 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐺(𝑠) = 75(1 + 0.2𝑠)𝑠(𝑠2 + 16𝑠 + 100) 
Sketch Bode plot for the following transfer function and determine phase margin and 

gain margin 

𝐺(𝑠) = 10𝑠(1 + 0.4𝑠)(1 + 0.1𝑠) 
Sketch Bode plot for the following transfer function and obtain the gain and phase cross 

over frequencies. 
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POLAR PLOT 

 The polar plot of a sinusoidal transfer function G(jω) is a plot of the magnitude of G(jω) 
versus the phase angle of G(jω) on polar coordinates as ω is varied from zero to infinity.  The polar 
plot is usually plotted on a polar graph sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐺(𝑠) = 1𝑠(1 + 𝑠)(1 + 2𝑠) 
The open loop transfer function of a unity feedback system is given by. 

Sketch the polar plot and determine the gain margin and phase margin. 

𝐺(𝑠) = 1𝑠(1 + 𝑠)(1 + 2𝑠) 
The open loop transfer function of a unity feedback system is given by. 

Sketch the polar plot and determine the gain margin and phase margin. 
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𝐺(𝑠) = 1𝑠2(1 + 𝑠)(1 + 2𝑠) 

The open loop transfer function of a unity feedback system is given by. 

Sketch the polar plot and determine the gain margin and phase margin. 
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4.4. COMPENSATOR DESIGN 
 When a set of specifications are given for a system, a suitable compensator should be 

designed so that the overall system will meet the given specification.  There are different types of 

compensator used namely, Lag compensator, Lead Compensator and Lag-Lead Compensator. 

 Compensation is required in the following situations 

 When the system is absolutely unstable, then compensation is required to stabilize the 

system and also to meet the desired performance. 

 When the system is stable, compensation is provided to obtain the desired performance. 

 The systems with type number 2 and above are usually absolutely unstable systems.  

Hence for systems with type number 2 and above, lead compensation is required, because the lead 

compensator increase the margin of stability. 

 In systems with type number 1 or 0, stability is achieved by adjusting the gain.  In such 

cases any of the three compensators-lag, lead and lag-lead may be used to obtain the desired 

performance. 

 

 

 

 

 

 

 

 The lead compensation increase the bandwidth, which improves the speed of response 

and also reduces the amount of overshoot.  Lead compensation appreciably improves the transient 

response, whereas there is a small change in steady state accuracy.  Lead compensation is provided 

to make an unstable system as a stable system. 

 

 

 

 

 

 

 

 

𝐺(𝑠) = 𝐾𝑠(𝑠+ 4)(𝑠+ 80) 
The open loop transfer function of a unity feedback system is given by. 

It is desired to have the phase margin to be atleast 33° and the velocity error constant 

Kv= 30 sec-1.  Design a phase lag series compensator. 

𝐺(𝑠) = 𝐾𝑠(𝑠+ 1)(𝑠+ 5) 

The open loop transfer function of a unity feedback system is given by. 

It is desired to have the velocity error constant Kv ≥ 50 and phase margin is  ≥ 20° Design 
a suitable lead compensator. 
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Chapter 5 

STATE VARIABLE ANALYSIS 
 

5.1. CONCEPTS OF STATE VARIABLES 
 

                The state variable analysis can be applied for any type of systems.  The analysis can be 

carried with initial conditions and can be carried on multiple input and multiple output systems.  In 

this method of analysis, it is not necessary that the state variables represent physical quantities of 

the system, but variables that do not represent physical quantities and those that are neither 

measurable not observable may be chosen as state variables. 

                  A set of variables which describes the system at any time instant are called state 

variables.  A system consists of m-inputs, p-outputs and n-state variables.  The state space 

representation of the system may be  

                  State variables = 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡),… . . , 𝑥𝑛(𝑡)  
                  Input variables = 𝑢1(𝑡), 𝑢2(𝑡),𝑢3(𝑡),… . . , 𝑢𝑚(𝑡)  
                 Output variables = 𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡),… . . , 𝑦𝑝(𝑡)  

              The different variables may be represented by the vectors (column matrix) as shown below. 

𝐼𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑈(𝑡) = [   
 𝑢1(𝑡)𝑢2(𝑡)...𝑢𝑚(𝑡)]   

   𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑌(𝑡) = [   
 𝑦1(𝑡)𝑦2(𝑡)...𝑦𝑃(𝑡)]   

 
  S𝑡𝑎𝑡𝑒 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑋(𝑡) = [   

 𝑥1(𝑡)𝑥2(𝑡)...𝑥𝑛(𝑡)]   
 
 

 

                   The state model of a system consists of state equation and output equation.  The state 

equation and output equation together called as state model of the system.  Hence the state model 

of a linear time invariant system (LTI) system is given by the following equations. 𝑋̇(𝑡) = 𝐴 𝑋(𝑡) + 𝐵 𝑈(𝑡) 𝑌(𝑡) = 𝐶 𝑋(𝑡) + 𝐷 𝑈(𝑡) 
5.2. STATE DIAGRAM 
 

The pictorial representation of the state model of the system is called State diagram.  The 

state diagram of the system can be either in Block Diagram form or in Signal flow graph form.  The 

state diagram describes the relationships among the state variables and provides physical 

interpretations of the state variables.  The time domain state diagram may be obtained directly 

from the differential equation governing the system and this diagram can be used for simulation of 

the system in analog computers. 
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The state diagram of a state model is constructed using three basic elements  Scalar, Adder 

and Integrator. 

Scalar: The scalar is used to multiply a signal by a constant.  The input signal x(t) is 

multiplied by the scalar a x(t).   

Adder: The adder is used to add two or more signals.  The output of the adder is the sum of 

incoming signals. 

Integrator: The integrator is used to integrate the signal.  They are used to integrate the 

derivatives of state variables to get the state variables.  The initial conditions of the state variable 

can be added by using an adder after integrator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑌(𝑠)𝑈(𝑠) = 10𝑆3 + 4𝑆2 + 2𝑆 + 1 

𝑌(𝑠)𝑈(𝑠) = 10𝑆3 + 4𝑆2 + 2𝑆 + 1 

𝑌(𝑠)[𝑆3 + 4𝑆2 + 2𝑆 + 1] = 10𝑈(𝑠) 𝑌(𝑠)𝑆3 + 4𝑆2𝑌(𝑠) + 2𝑆𝑌(𝑠) + 𝑌(𝑠) = 10𝑈(𝑠) 

𝑦 + 4𝑦̈+ 2𝑦̇ + 𝑦 = 10𝑢  

𝑥1 = 𝑦 ; 𝑥2 = 𝑦̇ ; 𝑥3 = 𝑦̈   𝑦 = 𝑥3̇   𝑦̇ = 𝑥2 ; 𝑦̈ = 𝑥3 𝑎𝑛𝑑 𝑦 = 𝑥1 𝑥3̇  + 4𝑥3 + 2𝑥2 + 𝑥1 = 10𝑢  𝑥3̇ = −4𝑥3 − 2𝑥2 − 𝑥1 + 10𝑢  

Obtain the state model of the system whose transfer function is given 

as 

Solution 

Given that,   

On taking inverse Laplace transform of the equation, we get, 

Let us define state variables as follows, 

The state equations are 𝑥1̇ = 𝑥2 ; 𝑥2̇ = 𝑥3 ; 𝑥3̇ = −𝑥1 − 2𝑥2 − 4𝑥3 + 10𝑢  
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5.3. EIGEN VALUES AND EIGEN VECTORS 
A nonzero column vector X is an eigenvector of a square matrix A, if there exists a scalar λ such that AX = λX, then λ is eigen value of A.  Eigen value may be zero but the corresponding vector 

may not be a zero vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[𝑥1̇𝑥2̇𝑥3̇] =  [ 0 1 00 0 1−1 −2 −4][𝑥1𝑥2𝑥3] + [ 0010] [𝑢] 
𝑦 = [1 0 0] [𝑥1𝑥2𝑥3] 

The output equation is  𝑦 = 𝑥1  

The state model in the matrix form is 

[𝜆𝐼 − 𝐴] = 𝜆 [1 00 1] − [ 0 3−2 −5] = [𝜆 −32 𝜆 + 5] 𝑇ℎ𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 (𝜆 + 2)(𝜆 + 3) = 0 

𝜆1 = −2, 𝜆2 = −3 

𝑓(𝜆𝑖) = 𝛼0 + 𝛼1𝜆𝑖  
−128 = 𝛼0 − 2𝛼1  

−2187 = 𝛼0 − 3𝛼1  

𝐴7 = [ 3990 6177−4118 −6305] 

Find f(A) = A7 for A = [ 0 3−2 −5] 

The eigen values 𝜆1, 𝜆2 are roots of characteristic equation  

Given that f(A) = A7, f(𝜆) = 𝜆 7,  

When 𝜆1 = −2  ; f(-2) = (-2) 7 = -128 

When 𝜆1 = −3  ; f(-3) = (-3) 7 = -2187 

When 𝜆1 = −2 ;  

When 𝜆1 = −3 ;  

On solving 𝛼0 = 3990 and 𝛼1 = 2059   𝑓(𝐴) = 𝛼0𝐼 + 𝛼1𝐴 
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5.4. CONCEPTS OF CONTROLLABILITY AND OBSERVABILITY 
Controllability 

A system is said to be completely state controllable if it is possible to transfer the system state 

from any initial state X(t0) to any other desired state X(td) in specified finite time by a control vector 

U(t).  Consider a system with state equation𝑋̇ = 𝐴𝑋+ 𝐵𝑈.  For this system, a composite matrix  𝑄𝑐 = [𝐵 𝐴𝐵 𝐴2𝐵… … 𝐴𝑛−1𝐵] 
Where n is the order of the system (n is also equal to number of state variables).  The rank 

of the matrix is n, if the determinant of (nxn) composite matrix 𝑄𝑐 is non zero, then rank of 𝑄𝑐 = 𝑛 

and the system is completely state controllable, 

Observability 

A system is said to be completely state observable if every state X(t) can be completely identified by 

measurements of the output Y(t) over a finite time interval. Consider a system with state 

equation𝑋̇ = 𝐴𝑋 + 𝐵𝑈.  For this system, a composite matrix 𝑄𝑜 = [𝐶𝑇 𝐴𝑇𝐶𝑇 (𝐴𝑇)2𝐶𝑇 ……. (𝐴𝑇)𝑛−1𝐶𝑇] 
Where n is the order of the system (n is also equal to number of state variables). In this case, the 
system is completely observable if the rank of composite matrix 𝑄𝑜 is non-zero. 

5.5. CONTROL SYSTEM DESIGN VIA POLE PLACEMENT BY STATE 

FEEDBACK 
In control system design by pole placement or pole assignment technique, the state 

variables are used for feedback, to achieve desired closed loop poles.  The advantage in this system 

is that the closed loop poles may be placed at any desired locations by means of state feedback 

through an appropriate state feedback gain matrix K.  The necessary and sufficient condition to be 

satisfied by the system for arbitrary pole placement is that the system be completely state 

controllable. 

𝐴2 = 𝐴.𝐴 = [−6 −1510 19 ] 
𝐴3 = [ 30 57−38 −65] 

𝐴7 = [ 3990 6177−4118 −6305] 

Alternate Method:  

A = [ 0 3−2 −5] 
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DETERMINATION OF STATE FEEDBACK GAIN MATRIX, K 
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